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Abstract

This paper presents a formulation for the identi�cation of linear

multivariable systems from single or multiple sets of input-output data.

The system input-output relationship is expressed in terms of an ob-

server, which is made asymptotically stable by an embedded eigenvalue

assignment procedure. The prescribed eigenvalues for the observer may

be real, complex, mixed real and complex, or zero. In this formulation,

the Markov parameters of the observer are identi�ed from input-output

data. The Markov parameters of the actual system are then recovered

from those of the observer and used to obtain a state space model of the

system by standard realization techniques. The basic mathematical for-

mulation is derived, and extensive numerical examples using simulated

noise-free data are presented to illustrate the proposed method.

Nomenclature

Symbol Dimensions Description of symbol

A n� n system matrix (discrete)

A n� n observer system matrix (discrete)

Ao n� n system matrix in observable canonical form

A(q�1) polynomial of delay operators associated with

output

B n�m system input inuence matrix (discrete)

B n� (m+ q) observer input inuence matrix

B0 n�m partition of B associated with input u(i)

B0d n�m partition of B associated with input u(i) for a

deadbeat observer

B(q�1) polynomial of delay operators associated with

input

B� n�m transformed partition B0 of B for a MIMO

system, B� = TB0

b n� 1 system input inuence vector for a SISO system

�b n� 2 observer input inuence vector for a SISO system

bo n� 1 system input inuence vector for a SISO system

in observable canonical form

b0 n� 1 partition of �b associated with scalar input

b� n� 1 transformed partition b0 of �b for a SISO system,

b� = Tb0

b�i scalar ith element of the transformed vector b�

b�T
(i)

1�m ith row of the matrix B�



C q � n system output matrix

C� q � n transformed system output matrix for a MIMO

system, C� = CT�1

c 1� n system output vector for a SISO system

co 1� n system output vector for a SISO system in

observable canonical form

c� 1� n transformed output vector for SISO systems,

c� = cT�1

c�i scalar ith element of the transformed output vector c�

c�(i) q � 1 ith column of the transformed system output

matrix C�

D q �m direct transmission matrix

d scalar direct transmission term for SISO systems

Em sm�m a matrix of identities and null matrices,

ET
m =

�
Im�m Om�(s�1)m

�

Eq rq � q a matrix of identities and null matrices,

ET
q =

�
Iq�q Oq�(r�1)q

�

H(�) qr �ms an r � s block data matrix of Markov parameters

for realization

I identity matrix

M n� q observer gain

Md n� q deadbeat observer gain for a MIMO system

M� n� q transformed observer gain for a MIMO system,

M� = TM

m�T
(i)

1� q ith row of the matrix M�

m scalar or number of inputs or

n� 1 observer gain for a SISO system

mo n� 1 observer gain for a SISO system in observable

canonical form

md
o n� 1 deadbeat observer gain for a SISO system in

observable canonical form

md
i scalar ith element of observer gain md

o in observable

canonical form

m� n� 1 transformed observer gain for a SISO system,
m� = Tm

m�
i scalar ith element of the transformed vector m�

n scalar order or assumed order of a linear system
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nc scalar number of prescribed complex conjugate pairs of
eigenvalues

nr scalar number of prescribed real eigenvalues

O null matrix

p scalar number of observer Markov parameters, CB,

CAB, : : :, CA p�1B, also referred to as window

width in the identi�cation algorithm

pi scalar coe�cients of characteristic equation for a SISO

system

q scalar number of outputs

q�1 one-time step delay operator

Rn, Rq, Rm space of n-, q-, and m-dimensional real-valued

vectors

r scalar pole radius of prescribed eigenvalues in the

complex plane

T n� n a similarity transformation matrix for A, A =

T�1�T

U; V rq � n; sm� n orthonormal matrices obtained from the singular

value decomposition of the Hankel matrix H(0)

u(i) m� 1 input to system at time step i

u(i� p) mp� 1 p-time step input history vector

u(i� n) mn� 1 n-time step input history vector

v(i) (m+ q)� 1 vector containing input and output served as

\input" to observer at time step i

x(i) n� 1 system state vector at time step i

bx(i) n� 1 estimated system state vector at time step i

ex(i) n� 1 state estimation error vector at time step i

Y� q �m system Markov parameter, Y� = CA�B

Y � q � (m+ q) observer Markov parameter, Y � = CA � B

Y
(1)
� q �m partition of Y � associated with input u(i)

Y
(2)
� q � q partition of Y � associated with output y(i)

y(i) q � 1 output of system at time step i

by(i) q � 1 estimated output at time step i

y(i� n) qn� 1 n-time step output history vector

y(i� p) qp� 1 p-time step output history vector

� n� 1 SISO observer parameter vector associated with

input for real eigenvalue assignment
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�c n� 1 counterpart of � for SISO complex eigenvalue
assignment

�d n� 1 counterpart of � for SISO deadbeat eigenvalue

assignment

�m n� 1 counterpart of � for SISO mixed eigenvalue

assignment

� q �mn MIMO observer parameter matrix associated

with input for real eigenvalue assignment

�c q �mn counterpart of � for MIMO complex eigenvalue

assignment

�d q �mn counterpart of � for MIMO deadbeat eigenvalue

assignment

�m q �mn counterpart of � for MIMO mixed eigenvalue

assignment

� n� 1 SISO observer parameter vector associated with

output for real eigenvalue assignment

�c n� 1 counterpart of � for SISO complex eigenvalue

assignment

�d n� 1 counterpart of � for SISO deadbeat eigenvalue

assignment

�m n� 1 counterpart of � for SISO mixed eigenvalue

assignment

� q � qn MIMO observer parameter matrix associated

with output for real eigenvalue assignment

�c q � qn counterpart of � for MIMO complex eigenvalue

assignment

�d q � qn counterpart of � for MIMO deadbeat eigenvalue

assignment

�m q � qn counterpart of � for MIMO mixed eigenvalue

assignment

�(i� 1) (2n+ 1)� 1 combined vector of �(i� 1), '(i� 1), and u(i) for

SISO real eigenvalue assignment

�c(i� 1) (2n+ 1)� 1 counterpart of �(i � 1) for SISO complex eigen-

value assignment

�d(i� 1) (2n+ 1)� 1 counterpart of �(i � 1) for SISO deadbeat

eigenvalue assignment

�m(i� 1) (2n+ 1)� 1 counterpart of �(i� 1) for SISO mixed eigenvalue

assignment

�(i� 1) (m+ q)n+m� 1 combined vector of �(i� 1), '(i� 1), and u(i) for
MIMO real eigenvalue assignment

�c(i� 1) (m+ q)n+m� 1 counterpart of �(i � 1) for MIMO complex

eigenvalue assignment
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�d(i� 1) (m+ q)n+m� 1 counterpart of �(i � 1) for MIMO deadbeat
eigenvalue assignment

�m(i� 1) (m+ q)n+m� 1 counterpart of �(i � 1) for MIMO mixed eigen-

value assignment

 (2n+ 1)� 1 vector of combined observer parameters for SISO

real eigenvalue assignment

c (2n+ 1)� 1 counterpart of  for SISO complex eigenvalue

assignment

d (2n+ 1)� 1 counterpart of  for SISO deadbeat eigenvalue

assignment

m (2n+ 1)� 1 counterpart of  for SISO mixed eigenvalue

assignment

b(i) (2n+ 1)� 1 vector of combined observer parameters esti-

mated at time step i for SISO real eigenvalue

assignment

bc(i) (2n+ 1)� 1 counterpart of b(i) for SISO complex eigenvalue

assignment

bd(i) (2n+ 1)� 1 counterpart of b(i) for SISO deadbeat eigenvalue

assignment

bm(i) (2n+ 1)� 1 counterpart of b(i) for SISO mixed eigenvalue

assignment

 q � (m+ q)n+m matrix of combined observer parameters for

MIMO real eigenvalue assignment

c q � (m+ q)n+m counterpart of  for MIMO complex eigenvalue

assignment

d q � (m+ q)n+m counterpart of  for MIMO deadbeat eigenvalue

assignment

m q � (m+ q)n+m counterpart of  for MIMO mixed eigenvalue
assignment

b(i) q � (m+ q)n+m matrix of combined observer parameters esti-

mated at time step i for MIMO real eigenvalue

assignment

bc(i) q � (m+ q)n+m counterpart of b(i) for MIMO complex eigenvalue

assignment

bd(i) q � (m+ q)n+m counterpart of b(i) for MIMO deadbeat eigen-

value assignment

bm(i) q � (m+ q)n+m counterpart of b(i) for MIMO mixed eigenvalue

assignment

� n� n diagonal matrix of prescribed real eigenvalues

�c n� n block diagonal matrix of prescribed complex

eigenvalues

�m n� n counterpart of � for mixed real and complex

eigenvalues

5



�i prescribed real or complex eigenvalues

�(�) n� 1 vector of powers of prescribed real eigenvalues for

a SISO system

�
(�)
c n� 1 counterpart of �(�) for SISO prescribed complex

eigenvalues

�
(�)
m n� 1 counterpart of �(�) for SISO prescribed mixed

eigenvalues

�
(�)
i;m m�m diagonal matrix of � -powers of real eigenvalue �i

repeated m times

�
(�)
i;q q � q diagonal matrix of � -powers of real eigenvalue �i

repeated q times

�
(�)
m mn�m matrix of powers of prescribed real eigenvalues

associated with input for a MIMO system

�
(�)
c;m mn�m counterpart of �

(�)
m associated with input for

MIMO complex eigenvalue assignment

�
(�)
m;m mn�m counterpart of �

(�)
m associated with input for

MIMO mixed eigenvalue assignment

�
(�)
q qn� q matrix of powers of prescribed real eigenvalues

associated with output for a MIMO system

�
(�)
c;q qn� q counterpart of �

(�)
q associated with output for

MIMO complex eigenvalue assignment

�
(�)
m;q qn� q counterpart of �

(�)
q associated with output for

MIMO mixed eigenvalue assignment

� n� n diagonal matrix of positive singular values

�i scalar real part of a complex eigenvalue

�
(�)
i ; !

(�)
i scalars elements of the matrix2

64 �
(�)
i !

(�)
i

�!
(�)
i �

(�)
i

3
75 �

2
4 �i !i

�!i �i

3
5
�

�
(�)
i;m m�m diagonal matrix of �

(�)
i repeated m times

�
(�)
i;q q � q diagonal matrix of �

(�)
i repeated q times

�(i� 1) n� 1 transformed p-time step input history vector

�(i � 1) = =u(i � p) for SISO real eigenvalue

assignment

�c(i� 1) n� 1 counterpart of �(i � 1) for SISO complex eigen-

value assignment
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�m(i� 1) n� 1 counterpart of �(i� 1) for SISO mixed eigenvalue
assignment

�(i� 1) nm� 1 transformed p-time step input history vector

�(i� 1) = =mu(i � p) for MIMO real eigenvalue

assignment

�c(i� 1) nm� 1 counterpart of �(i � 1) for MIMO complex

eigenvalue assignment

�m(i� 1) nm� 1 counterpart of �(i � 1) for MIMO mixed eigen-

value assignment

'(i� 1) n� 1 transformed p-time step output history vector

'(i � 1) = =y(i � p) for SISO real eigenvalue

assignment

'c(i� 1) n� 1 counterpart of '(i � 1) for SISO complex eigen-

value assignment

'm(i� 1) n� 1 counterpart of '(i� 1) for SISO mixed eigenvalue

assignment

'(i� 1) nq � 1 transformed p-time step output history vector

'(i � 1) = =qy(i � p) for MIMO real eigenvalue

assignment

'c(i� 1) nq � 1 counterpart of '(i � 1) for MIMO complex

eigenvalue assignment

'm(i� 1) nq � 1 counterpart of '(i � 1) for MIMO mixed eigen-

value assignment

!i scalar complex part of a complex eigenvalue

!
(�)
i;m m�m diagonal matrix of !

(�)
i repeated m times

!
(�)
i;q q � q diagonal matrix of !

(�)
i repeated q times

= n� p Vandermonde-like matrix of real eigenvalues for

SISO systems

=c n� p counterpart of = for SISO complex eigenvalue

assignment

=m n� p counterpart of = for SISO mixed eigenvalue

assignment

=m mn�mp Vandermonde-like matrix of real eigenvalues

associated with input for a MIMO system

=c;m mn�mp counterpart of =m for MIMO complex eigenvalue

assignment

=m;m mn�mp counterpart of =m for MIMO mixed eigenvalue

assignment

=q qn� qp Vandermonde-like matrix of real eigenvalues

associated with output for a MIMO system

=c;q qn� qp counterpart of =q for MIMO complex eigenvalue

assignment

7



=m;q qn� qp counterpart of =q for MIMO mixed eigenvalue
assignment

<(i) (m+ q)n+m projection or variance matrix for recursive least-

�(m+ q)n+m squares estimation

Abbreviations:

ARMA auto-regressive moving average

ERA Eigensystem Realization Algorithm

MIMO multiple-input multiple-output

SISO single-input single-output

Introduction

The aim of learning identi�cation is to provide methods to improve identi�cation of the

system model as additional information about the system becomes available. The techniques

are in the time domain, and the system information comes in the form of input-output data

from either multiple experiments or a single experiment of extended duration. Originally,

the idea of learning identi�cation was motivated by the fact that for system identi�cation of

exible structures, multiple experiments are often performed with the hope that the averaged

data can reduce the e�ects of irregularities such as measurement noises, repetitive disturbances,

and slight nonlinearities. This motivates the development of learning identi�cation to improve

identi�cation results e�ectively from multiple experiments. An early technique for identi�cation
of parameters from multiple experiments was formulated in reference 1. Learning identi�cation

in the present form identi�es the Markov parameters from general input-output data (ref. 2). The

Markov parameters are then used to obtain a state space model of the system by a realization

procedure, e.g., the Eigensystem Realization Algorithm (ERA) (refs. 3 and 4). The learning

identi�cation procedures presented in reference 2 require input-output data from a large number

of experiments of generally short duration. The procedures identify as many Markov parameters

as the number of data samples in each experiment, and the number of data samples that can be

used is constrained by the number of Markov parameters desired to be identi�ed. In practice,

there may be substantially more data samples in each experiment than the number of desired

Markov parameters. Therefore, these techniques are not e�cient in the sense that they do not

necessarily make use of all available input-output data. This motivates the development of

identi�cation algorithms from a single set of input-output data of extended duration. Learning

identi�cation is closely related in concept and technique to learning control, where the motivation

is to develop control laws that improve tracking error based on repeated execution of a task

(refs. 5{11).

An identi�cation procedure from a single set of input-output data is developed in reference 12

by means of an auto-regressive moving average (ARMA) description of the original system

in state space format via an observer. An important distinguishing feature of the approach

presented in reference 12 as opposed to previous development is that the system is identi�ed

indirectly by an observer, which is made asymptotically stable by an eigenvalue assignment

procedure. The discrete-time eigenvalues are required to be real, distinct, with magnitudes less

than one. The recursive formulation of reference 12 extends the repetition domain concept used

in learning control and identi�cation to shifting time intervals. It is based on procedures that

identify system Markov parameters for indirect learning control and repetitive control (refs. 9

and 10). The use of Markov parameters in system identi�cation is discussed in reference 13. In

this paper, the identi�cation technique is generalized to allow assignment of complex eigenvalues.
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This generalization is particularly important when the order of the system is large, since it
permits a more even distribution of asymptotically stable eigenvalues inside the unit circle by

using the entire complex plane.

The basic contributions of this paper are as follows: First, a simpli�ed reformulation of the

original identi�cation algorithm with placement of real eigenvalues is presented. Second, the

formulation is extended to the case of complex eigenvalue assignment, which is also applicable

to the general case of assigning both real and complex eigenvalues. Third, a version of this
identi�cation procedure using a deadbeat observer with poles placed at the origin is formulated.

This case is of particular interest since it makes use of a minimum number of data samples, and

the number of identi�ed observer Markov parameters are reduced to a minimum set. Fourth,

an extensive numerical study is provided to illustrate the basic characteristics of the algorithm.

The deterministic technique developed here is applicable for data from either a single set or

multiple sets of experiments. Because of the complexities in the formulation of the identi�cation

algorithms, the case of single-input single-output systems will be �rst described. The results

are then extended to the case of multiple-input multiple-output systems. This paper gives a

more detailed presentation of the results in reference 14, with additional examples. In order

to study the exact nature of the identi�cation procedure under ideal circumstances, this paper

is con�ned to purely deterministic results. In the presence of process and measurement noises,

the relationship between the identi�cation algorithm with a deadbeat observer presented in this

paper and the stochastic Kalman �lter algorithm of reference 15 is established in reference 16. A

procedure to improve observer and Kalman �lter identi�cation results by whitening the residual

sequence is presented in reference 17. Often of interest in practice is the identi�cation of a

model in a prescribed frequency range. Such a development of the algorithm is formulated in

reference 18.

The general outline of the paper is as follows. The procedure with real eigenvalue assignment,

which is �rst presented in reference 12, is reformulated here using a modi�ed mathematical

formulation. The modi�ed formulation allows direct extension of the procedure to the case

with complex eigenvalue assignment. A special case of the identi�cation procedure when all

eigenvalues are placed at the origin is then presented. For clarity, the formulation for single-

input single-output systems is presented in the main body of the paper, except for the case of

mixed real and complex eigenvalues assignment, which is presented in appendix A. Extensions

of the identi�cation procedure to multiple-input multiple-output systems are parallel to the

developments for the single-input single-output case. The multivariable case is presented

in appendix B. The truss structure used in the numerical example section is described in

appendix C.

Mathematical Preliminaries

The following general mathematical formulation is applicable to both single-input single-

output (SISO) and multiple-input multiple-output (MIMO) systems. This section introduces

the basic concepts and establishes some general mathematical relations, which are used to derive

the identi�cation algorithm in subsequent sections.

System Description

In this section, the relationship between the state space model and a particular auto-regressive

moving average (ARMA) model of a linear system is presented. This relationship is particularly

9



useful for developing an identi�cation procedure. First, consider a general discrete multivariable
linear system expressed in the state space format

x(i+ 1) = Ax(i) +Bu(i)

y(i) = Cx(i) +Du(i)

)
(1)

where x(i) 2 Rn; y(i) 2 Rq; u(i) 2 Rm. Let x(0) denote the initial state at i = 0. An input-

output description of the above system can be obtained from equation (1) as

y(i) = CAix(0) +

i�1X
�=0

CAi���1Bu(�) +Du(i) (2)

Note that the �rst term on the right-hand side of the above equation is dependent on the initial

condition x(0). The products CAi���1B denoted by Yi���1, together with D, are known as

the Markov parameters of the system. From equation (2), the input-output description of the

system with zero initial conditions becomes

y(i) =

i�1X
�=0

Y�u(i� � � 1) +Du(i) (3)

where y(i) is expressed in terms of Y0 up to Yi�1 and the direct transmission term D. In general,

this description requires i + 1 Markov parameters to describe the output at time step i. If the

system is asymptotically stable such that the Markov parameters Yp, Yp+1, Yp+2, : : : can be

neglected for some p, then at time steps i � p, the input-output description can be approximated

with a �nite set of Markov parameters as

y(i) �

p�1X
�=0

Y�u(i� � � 1) +Du(i) (4)

It is important to note that for a �nite dimensional system, there is only a �nite number of

independent system Markov parameters. Therefore, the system Markov parameters used in the

description of equation (4) are not necessarily independent. For su�ciently damped systems,

equation (4) is a valid description of the input-output relationship provided that p is chosen

su�ciently large such that the approximation holds. However, for lightly damped systems, such

as large exible space structures, the ARMA model would require a very large number of Markov

parameters, which would not be computationally attractive for system identi�cation. In fact,

if the system is unstable or marginally stable, such a description is no longer possible. In the

following, a procedure is described to express the state space model in equation (1) as an ARMA

model with a �nite number of Markov parameters. The Markov parameters can be shown to be

those of an observer system that is made asymptotically stable by eigenvalue assignment. This

observer model is then used to develop an identi�cation method for the system described by

equation (1).

To construct an observer model, add and subtract the term My(i) to the right-hand side of

the state equation in equation (1) to yield

x(i+ 1) = Ax(i) + Bu(i) +My(i)�My(i)

= (A+MC)x(i) + (B +MD)u(i)�My(i) (5)

10



De�ne

A = A +MC

B = [B +MD;�M ]

v(i) =

2
4 u(i)
y(i)

3
5

9>>>>>>>>>=
>>>>>>>>>;

(6)

Then the original system becomes

x(i+ 1) = Ax(i) +Bv(i)

y(i) = Cx(i) +Du(i)

)
(7)

The input-output description of the system with zero initial conditions is

y(i) =

i�1X
�=0

Y i���1v(�) +Du(i) (8)

where

Y i���1 = CA i���1B

If the system is made asymptotically stable by placing of the eigenvalues of the matrix A

such that the Markov parameters Y p, Y p+1, Y p+2, : : : can be neglected for some p, then at

time steps i � p, the input-output description can be approximated with a reduced set of p+ 1

Markov parameters
�
Y 0; Y 1; : : : ; Y p�1; D

	
. The following equality

y(i) =

p�1X
�=0

Y � v(i� � � 1) +Du(i) (i � p) (9)

then approximately holds. If the original system is observable, then for any system matrix A, it

is always possible to �nd a matrix M such that the desired eigenvalues of A are placed in any

particular (symmetric) con�guration. For the case of lightly damped systems, this procedure

can transform the set of an otherwise large number of Markov parameters to an approximately

equivalent reduced set
�
Y 0; Y 1; : : : ; Y p�1; D

	
by selecting appropriate eigenvalues for A.

Furthermore, for a su�ciently large p, the inuence of a nonzero initial condition on the output

at time steps i � p can be neglected. The model of equation (9) is used to develop the

identi�cation method presented herein, and the eigenvalue assignment step is achieved implicitly

through processing of the measured input-output data. To see that equation (9) is a special auto-

regressive moving average model, it can be rewritten as

y(i)+

p�1X
�=0

C(A+MC)�My(i� �� 1) =

p�1X
�=0

C(A+MC)�(B+MD)u(i� �� 1)+Du(i) (10)

De�ning a delay operator q�1 applied to a variable z(i) to be q�1z(i) � z(i � 1), the above

equation can be written in the usual deterministic ARMA model format

A
�
q�1
�
y(i) = B

�
q�1
�
u(i) (11)

11



with the polynomials of the delay operators A
�
q�1
�
and B

�
q�1
�
given as

A
�
q�1
�
= I + CMq�1 + CAMq�2 + � � �+ CA p�1Mq�p

B
�
q�1
�
= D + CB0q�1 + CAB0q�2 + � � �+ CA p�1B0q�p

where A = A+MC and B0 = B +MD.

Relations of the System to an Observer Model

The role of the matrixM in the above development can be interpreted in terms of an observer

model. Consider the system given in equation (1). It has an observer of the form

bx(i+ 1) = Abx(i) +Bu(i)�M [y(i)� by(i)]
by(i) = Cbx(i) +Du(i) (12)

It can be shown from equations (12) and (1) that

bx(i+ 1) = Abx(i) + Bu(i)�MC[x(i)� bx(i)]
= (A+MC)bx(i) + Bu(i)�M [y(i)�Du(i)]

= (A+MC)bx(i) + (B +MD)u(i)�My(i) (13)

De�ning the state estimation error ex(i) = x(i)� bx(i), the equation that governs ex(i) is
ex(i+ 1) = Ax(i) +Bu(i)� [(A+MC)bx(i) + (B +MD)u(i)�My(i)]

= (A+MC)ex(i) (14)

If system (1) is observable, then M may be chosen to place the eigenvalues of A +MC in any

desired (symmetric) con�guration. In particular, they will be placed inside the unit circle in the

complex plane. From equation (14), if M is chosen such that A+MC is asymptotically stable,

then lim
i!1

ex(i) = 0; i.e., the estimated state bx(i) converges to the true state x(i) as i approaches
in�nity. Equation (13) then becomes

x(i+ 1) = (A+MC)x(i) + (B +MD)u(i)�My(i) (15)

which is exactly the same as equation (5).

From this analysis, matrix M can be interpreted as an observer gain. The parameters

Y i���1 = CA i���1B in equation (8) are then the Markov parameters of an observer system;

hence they are now referred to as observer Markov parameters. In the identi�cation process,

these are the parameters to be identi�ed. Once they are identi�ed, the actual system Markov

parameters can be recovered. There is an algebraic relationship between the Markov parameters
of the observer system and those of the actual system. This result is established in the following

section.

Relations Between the Markov Parameters of the Observer and the Actual System

As before, let the Markov parameters of the observer system be denoted by Y � , and the

Markov parameters of the actual system by Y� . Recall that

12



Y � = CA � B

= [C(A+MC)� (B +MD);�C(A+MC)�M ]

� [Y
(1)
� ; Y

(2)
� ] (16)

From the second equation in equation (16), the Markov parameter CB of the system is simply

Y0 = CB = C(B +MD)� (CM)D

= Y
(1)
0 + Y

(2)
0 D (17)

To obtain the Markov parameter CAB, �rst consider the product Y 1
(1)

Y
(1)
1 = C(A+MC)(B +MD)

= CAB + CMCB + C(A+MC)MD

Hence,

Y1 = CAB

= Y
(1)
1 + Y

(2)
0 Y0 + Y

(2)
1 D (18)

Similarly, to obtain the Markov parameter CA2B, consider the product Y
(1)
2

Y
(1)
2 = C(A+MC)2(B +MD)

= C(A2 +MCA+ AMC +MCMC)(B +MD)

= CA2B + CMCAB + C(A+MC)MCB + C(A+MC)2MD

Therefore,

Y2 = CA2B

= Y
(1)
2 � CMCAB � C(A+MC)MCB � C(A+MC)2MD

= Y
(1)
2 + Y

(2)
0 Y1 + Y

(2)
1 Y0 + Y

(2)
2 D (19)

By induction, the general relationship between the actual system Markov parameters and the

observer Markov parameters can be shown to be

Y� = Y
(1)
� +

��1X
i=0

Y
(2)
i Y��i�1 + Y

(2)
� D (20)

For a noise-free �nite-dimensional system, knowledge of a su�cient number of actual system

Markov parameters is adequate to deduce a state space realization of the system of interest.

Physical aspects of the model such as natural frequencies, damping ratios, and mode shapes can

then be found.

13



Identi�cation Theory for Single-Input Single-Output Systems

In the following, an identi�cation method is developed to identify the coe�cients of an ARMA

model that is made asymptotically stable by an embedded eigenvalue assignment procedure. The

coe�cients of the ARMA model are precisely the observer Markov parameters formulated in the

above section. For simplicity, consider the case of a single-input single-output system in the

state space format:

x(i+ 1) = Ax(i) + bu(i)

y(i) = cx(i) + du(i) (21)

where x(i) 2 Rn, and u(i) and y(i) are scalars. The system matrix A is an n � n matrix, b an

n � 1 column vector, c a 1 � n row vector, and the direct transmission term d is a scalar. The

input-output description of this system is given as in equation (9):

y(i) =

p�1X
�=0

Y � v(i� � � 1) + du(i) (22)

where

Y � = cA � b = c(A+mc)� [b+md;�m] = [cA � b0;�cA �m] (23)

The observer gain m in this case is an n� 1 column vector. Recall that v(i) contains both the

input u(i) and the output y(i). For i � p, equation (22) can be rewritten as an approximate

ARMA model:

y(i) =

p�1X
�=0

(cA � b0)u (i� � � 1) + du(i)�

p�1X
�=0

(cA �m) y (i� � � 1) (24)

Derived in the following section is an algorithm that computes the coe�cients cA �b0 and cA �m

of the ARMA model in equation (24) and simultaneously places the eigenvalues ofA in prescribed

locations so as to make the ARMA model asymptotically stable. These eigenvalues may be real,

complex conjugate pairs, a combination of both, or zero (deadbeat).

SISO Real Eigenvalue Assignment

This is the simplest case, where all the prescribed eigenvalues are real and distinct. The

eigenvalue assignment procedure can be derived by noting that for desired real and distinct

eigenvalues of A, one has for some nonsingular matrix T

A = T�1�T (25)

where � is a diagonal matrix of n prescribed eigenvalues,

� =

2
66666664

�1

�2

. . .

�n

3
77777775

(26)

14



For simplicity, the blank spaces denote zero elements. Then the products cA �b0 and cA �m

become

cA �b0 = cT�1��Tb0 cA �m = cT�1��Tm (27)

If the elements of c� � cT�1, b� � Tb0, and m� � Tm are written explicitly as

c� =

�
c�1 c�2 � � � c�n

�
b� =

2
66666664

b�1

b�2

...

b�n

3
77777775

m� =

2
66666664

m�
1

m�
2

...

m�
n

3
77777775

(28)

then the product cA �b0 in equation (24) may be expressed as

cA �b0 = c���b� =

�
c�1b

�
1 c�2b

�
2 � � � c�nb

�
n

�
2
66666664

��1

��2

...

��n

3
77777775

(29)

Similarly,

�cA �m = �c���m� =

�
�c�1m

�
1 �c�2m

�
2 � � � �c�nm

�
n

�
2
66666664

��1

��2

...

��n

3
77777775

(30)

With the following simpli�ed notations

�T =

�
c�1b

�
1 c�2b

�
2 � � � c�nb

�
n

�

�T =

�
�c�1m

�
1 �c�2m

�
2 � � � �c�nm

�
n

�

�(�) =

�
��1 ��2 � � � ��n

�T

9>>>>>>>>>>>=
>>>>>>>>>>>;

(31)

equation (24) becomes

y(i) = �T
p�1X
�=0

�(�)u(i� � � 1) + �T
p�1X
�=0

�(�)y(i� � � 1) + du(i) (32)

or simply

y(i) = T�(i� 1) (33)
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which is in linear form with the unknown parameters in �T , �T , and d with

T =

�
�T �T d

�
�(i� 1) =

2
6664
�(i� 1)

'(i� 1)

u(i)

3
7775 (34)

where

�(i� 1) =

p�1X
�=0

�(�)u(i� � � 1) = =u(i� p)

'(i� 1) =

p�1X
�=0

�(�)y(i� � � 1) = =y(i� p)

9>>>>>>>>=
>>>>>>>>;

(35)

The matrix = is a Vandermonde-like matrix of prescribed real eigenvalues of magnitudes less

than 1:

= =

2
666666664

�
p�1
1 �

p�2
1 � � � �1 1

�
p�1
2 �

p�2
2 � � � �2 1

...
... � � �

...
...

�
p�1
n �

p�2
n � � � �n 1

3
777777775

(36)

and the p� 1 input and output history vectors u(i� p) and y(i� p) are de�ned as

u(i� p) =

2
66666664

u(i� p)

...

u(i� 2)

u(i� 1)

3
77777775

y(i� p) =

2
66666664

y(i� p)

...

y(i� 2)

y(i� 1)

3
77777775

(37)

Note that equation (33) is in linear form; thus the unknown observer parameter vector 

can be solved for directly from input-output data. For on-line computation, however, recursive

solution is often preferred. Let b(i) denote the estimated parameter vector at time step i. The

standard recursive least-squares solution to equation (33) is simply

b(i) = b(i� 1) +
<(i� 2)�(i� 1)

1 + �(i� 1)T<(i� 2)�(i� 1)

h
y(i)� bT (i� 1)�(i� 1)

i

<(i� 1) = <(i� 2)�
<(i� 2)�(i� 1)�(i� 1)T<(i� 2)

1 + �(i� 1)T<(i� 2)�(i� 1)

9>>>>>=
>>>>>;

(38)

with an arbitrary initial guess b(0), and <(�1) is any positive de�nite matrix. Other recursive

parameter estimation algorithms may be used to replace the standard least squares at this step,

e.g., the projection or instrumental variable methods (refs. 19 and 20). The above algorithm

identi�es the parameter vector , which consists of the products c�i b
�
i , �c

�
im

�
i (i = 1; 2; : : : ; n),
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and d. These products together with the assigned eigenvalues �i (i = 1; 2; : : : ; n) can be used
to reconstruct the observer Markov parameters Y � (� = 0; 1; 2; : : :) as

Y � = cA � b = cA � [b0;�m]

=

2
666666664
�
c�1b

�
1 c�2b

�
2 � � � c�nb

�
n

�
2
66666664

��1

��2

...

��n

3
77777775
;

�
�c�1m

�
1 �c�2m

�
2 � � � �c�nm

�
n

�
2
66666664

��1

��2

...

��n

3
77777775

3
777777775

=

�
�T�(�) �T�(�)

�
(39)

Finally, the actual system Markov parameters can then be recovered from the above recon-

structed observer Markov parameters according to equation (20):

Y� = Y
(1)
� +

��1X
i=0

Y
(2)
� Y��i�1 + Y

(2)
� D

= �T�(�) + �T

 
��1X
i=0

�(�)Y��i�1 + �(�)d

!
(40)

where Y
(1)
� = �T�(�) and Y

(2)
� = �T�(�).

SISO Complex Eigenvalue Assignment

With the general mathematical framework developed for real eigenvalue assignment, the

procedure for complex eigenvalue assignment can be similarly derived by replacing equations (25)

and (26) with their counterparts for complex conjugate pairs of eigenvalues �i = �i � j!i
(i = 1; 2; : : : ; n=2). Namely, A = T�1�cT , and

�c =

2
666666666666666666664

2
4 �1 !1

�!1 �1

3
5

2
4 �2 !2

�!2 �2

3
5

. . . 2
4 �n=2 !n=2

�!n=2 �n=2

3
5

3
777777777777777777775

(41)
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Furthermore, associated with the complex conjugate pair �i = �i � j!i, write

2
4 �i !i

�!i �i

3
5
�

�

2
64 �

(�)
i !

(�)
i

�!
(�)
i �

(�)
i

3
75 (42)

then the product cA �b0 in equation (24) becomes

cA �b0 = c���
cb
�

= �
(�)
1 (c�1b

�
1 + c�2b

�
2) + !

(�)
1 (c�1b

�
2 � c�2b

�
1) + �

(�)
2 (c�3b

�
3 + c�4b

�
4) + !

(�)
2 (c�3b

�
4 � c�4b

�
3)

+ � � �+ �
(�)
n=2

�
c�n�1b

�
n�1 + c�nb

�
n

�
+ !

(�)
n=2

�
c�n�1b

�
n � c�nb

�
n�1

�
= �Tc �

(�)
c (43)

Similarly,

cA �m = c���
cm

�

= �
(�)
1 (c�1m

�
1 + c�2m

�
2) + !

(�)
1 (c�1m

�
2 � c�2m

�
1) + �

(�)
2 (c�3m

�
3 + c�4m

�
4) + !

(�)
2 (c�3m

�
4 � c�4m

�
3)

+ � � �+ �
(�)
n=2

�
c�n�1m

�
n�1 + c�nm

�
n

�
+ !

(�)
n=2

�
c�n�1m

�
n � c�nm

�
n�1

�
= ��Tc �

(�)
c (44)

where

�T
c =

�
c�1b

�

1 + c�2b
�

2 c�1b
�

2 � c�2b
�

1 � � � c�
n�1b

�

n�1 + c�nb
�

n c�
n�1b

�

n � c�nb
�

n�1

�

�Tc = �

�
c�1m

�

1 + c�2m
�

2 c�1m
�

2 � c�2m
�

1 � � � c�
n�1m

�

n�1 + c�nm
�

n c�
n�1m

�

n � c�nm
�

n�1

�

�
(�)
c =

�
�
(�)

1 !
(�)

1 �
(�)

2 !
(�)

2 � � � �
(�)

n=2
!
(�)

n=2

�T �
�
(0)

i
= 1; !

(0)

i
= 0

�

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(45)

The elements c�i , b
�
i , and m�

i (i = 1; 2; : : : ; n) are de�ned exactly the same way as in

equations (28), and n is now necessarily even, since all the prescribed eigenvalues must appear

as complex conjugate pairs. Equation (24) now becomes

y(i) = �Tc

p�1X
�=0

�
(�)
c u(i� � � 1) + �Tc

p�1X
�=0

�
(�)
c y(i� � � 1) + du(i)

= Tc �c(i� 1) (46)
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which is in linear form, with

Tc =

�
�Tc �Tc d

�
�c(i� 1) =

2
6664
�c(i� 1)

'c(i� 1)

u(i)

3
7775 (47)

where

�c(i� 1) =

p�1X
�=0

�
(�)
c u(i� � � 1) = =cu(i� p)

'c(i� 1) =

p�1X
�=0

�
(�)
c y(i� � � 1) = =cy(i� p)

9>>>>>>>>=
>>>>>>>>;

(48)

The matrix =c is a Vandermonde-like matrix of prescribed complex eigenvalues of magnitudes

less than unity

=c =

2
66666666666666666664

�
(p�1)
1 �

(p�2)
1 � � � � � � �1 1

!
(p�1)
1 !

(p�2)
1 � � � � � � !1 0

�
(p�2)
2 �

(p�2)
2 � � � � � � �2 1

!
(p�1)
2 !

(p�2)
2 � � � � � � !2 0

...
... � � � � � �

...
...

�
(p�1)
n=2

�
(p�2)
n=2

� � � � � � �n=2 1

!
(p�1)
n=2

!
(p�2)
n=2

� � � � � � !n=2 0

3
77777777777777777775

(49)

and the p�1 input and output history vectors u(i�p) and y(i�p) are de�ned as in equations (37).

Let bc(i) denote the estimated parameter vector at time step i. The recursive least-squares

solution for the complex eigenvalue case is obtained by simply replacing b(i) by bc(i), �(i � 1)

by �c(i � 1) in equations (38) with an arbitrary initial guess bc(0) given, and <(�1) is any

positive de�nite matrix <0. Any other recursive algorithm may be used to replace the standard

least squares at this step. The algorithm identi�es the parameter vector c, which consists of the

product sums and di�erences c�i�1b
�
i�1+c

�
i b
�
i , c

�
i�1b

�
i �c

�
i b
�
i�1, c

�
i�1m

�
i�1+c

�
im

�
i , c

�
i�1m

�
i �c

�
im

�
i�1

(i = 1; 2; : : : ; n), and d. These identi�ed parameters, together with the assigned conjugate
pairs of complex eigenvalues �i (i = 1; 2; : : : ; n=2), can be used to reconstruct the observer

system Markov parameters Y � (� = 0; 1; 2; : : :)

Y � = cA � b = cA �
�
b0;�m

�
=

�
�Tc �

(�)
c �Tc �

(�)
c

�
�

�
Y

(1)
� Y

(2)
�

�
(50)

Finally, the actual system Markov parameters can then be recovered from the above recon-

structed observer Markov parameters according to equation (20) in the same way as the real
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eigenvalue case:

Y� = �Tc �
(�) + �Tc

 
��1X
i=0

�
(�)
c Y��i�1 + �

(�)
c d

!
(51)

SISO Deadbeat Eigenvalue Assignment

If all the eigenvalues of the deterministic observer system are placed at the origin, then the

Markov parameters of the observer system will become identically zero after a �nite number of

time steps. This is a deadbeat observer. Speci�cally,

Y � � 0 (� = n; n+ 1; n+ 2; : : :) (52)

where n is the order of the system. Let md denote the deadbeat observer gain, the expression

relating the input-output of the system and the corresponding observer Markov parameter is

given by

y(i) =

n�1X
�=0

�
cA �b0

�
u(i� � � 1)�

n�1X
�=0

�
cA �md

�
y(i� � � 1) + du(i) (53)

The structure of A can be better seen by considering the system given in equation (21) in
observable canonical form:

Ao =

2
66666666664

0 �a1

1 0 �a2

1
. .. �a3

. . . 0
...

1 �an

3
77777777775

bo =

2
66666666664

b1

b2

b3

...

bn

3
77777777775

co =

�
0 0 0 � � � 1

�
(54)

Let the observer gain in observable canonical form be denoted by mo = [m1 m2 m3 � � � mn]
T .

The observer system matrix A = Ao +moco is simply

A =

2
66666666664

0 �a1 +m1

1 0 �a2 +m2

1 0 �a3 +m3

1
. . .

...

1 �an +mn

3
77777777775

(55)

For a prescribed set of eigenvalues �i for A, the observer gain mo is unique and its elements are

given by mi = ai � pi, where pi are the coe�cients of the characteristic equation

(�� �1) (�� �2) � � � (�� �n) = �n + pn�
n�1 + � � �+ p2�+ p1 = 0 (56)

Let md
o = [md

1 md
2 � � � md

n ]
T denote the deadbeat observer gain for the system in observable

canonical form. In the deadbeat case, the characteristic equation is simply �n = 0. Hence, pi = 0,
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md
i = ai. The observer system matrix A then becomes

A =

2
6666666664

0

1 0

1 0

1
. ..

1 0

3
7777777775

(57)

In this case, it is convenient to work with the system in observable canonical form directly. The

Markov parameters of the deadbeat observer system can be computed as

Y 0 = cobo = co

�
bo +md

od �md
o

�
=

�
bn +md

nd �md
n

�

Y 1 = coAbo =

�
bn�1 +md

n�1d �md
n�1

�

...

Y n�1 = coA
n�1 bo =

�
b1 +md

1d �md
1

�

Y n = Y n+1 = Y n+2 � � � = 0

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(58)

Equation (24) becomes

y(i) =

n�1X
�=0

�
bn�� +md

n��d
�
u(i� � � 1)�

n�1X
�=0

md
n�� y(i� � � 1) + du(i) (59)

De�ning the parameter vectors

�Td =

�
bn +md

nd bn�1 +md
n�1d � � � b1 +md

1d

�

=

�
Y
(1)
0 Y

(1)
1 � � � Y

(1)
n�1

�

�Td =

�
�md

n �md
n�1 � � � �md

1

�

=

�
Y

(2)
0 Y

(2)
1 � � � Y

(2)
n�1

�

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(60)

equation (59) can then be written as

y(i) = �Td u(i� n) + �Td y(i� n) + du(i)

= Td �d(i� 1) (61)
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where

Td =

�
�Td �Td d

�
�d(i� 1) =

2
6664
u(i� n)

y(i� n)

u(i)

3
7775 (62)

and the n� 1 input and output history vectors u(i� n) and y(i� n) are de�ned as

u(i� n) =

2
66666664

u(i� n)

...

u(i� 2)

u(i� 1)

3
77777775

y(i� n) =

2
66666664

y(i� n)

...

y(i� 2)

y(i� 1)

3
77777775

(63)

The recursive solution to equation (61) is obtained by simply replacing b(i) by bd(i), and �(i�1)
by �d(i�1) in equations (38). The actual system Markov parameters can be recovered according

to equation (20) as

Y� = Y
(1)
� +

��1X
i=0

Y
(2)
� Y��i�1 + Y

(2)
� d

=
�
bn�� +md

n��d
�
�

n�1X
i=0

md
n��Y��i�1 �md

n��d

= bn�� �

n�1X
i=0

md
n��Y��i�1 (64)

where bn�� = md
n�� � 0, for � = n, n+ 1, : : : :

A particular feature of the deadbeat algorithm is that the observer systemMarkov parameters

are identically zero after a �nite number of time steps. The input-output ARMA relation given

in equation (22) or equation (24) used in deriving the algorithm therefore holds exactly. This is

di�erent from the previous cases, where by placing real and complex eigenvalues of magnitudes

less than unity but greater than zero, the ARMA relation only holds approximately. The degree

to which the approximation holds depends on the choices of prescribed eigenvalues and the

window width p, i.e., the number of observer Markov parameters retained to maintain a valid

approximation. In the deadbeat case, however, the approximation becomes exact, the window

width p is the order of the system, and the identi�ed parameters contain an exact description

of the system of interest.

Realization by the Eigensystem Realization Algorithm

A state space model of the system from the recovered Markov parameters can be obtained

by the Eigensystem Realization Algorithm (ERA). The algorithm begins with an r � s block
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data matrix called the Hankel matrix and denoted by H(�)

H(�) =

2
66666664

Y� Y�+1 � � � Y�+s�1

Y�+1 Y�+2 � � � Y�+s

...
... � � �

...

Y�+r�1 Y�+r � � � Y�+r+s�2

3
77777775

(65)

The order of the system is determined by the singular value decomposition of H(0),

H(0) = U�V T (66)

where the columns of U and V are orthonormal, � is an n�n diagonal matrix of positive singular

values, and n is the order of the system. De�ning a q � rq matrix ET
q , and an m � sm matrix

ET
m made up of identity and null matrices of the form

ET
q =

�
Iq�q Oq�(r�1)q

�
ET
m =

�
Im�m Om�(s�1)m

�
(67)

a discrete-time minimal order realization of the system can be shown to be

Ar = ��1=2UTH(1)V��1=2

Br = �1=2V TEm

Cr = ET
q U�

1=2

9>>>>>=
>>>>>;

(68)

This is the basic ERA formulation. To use ERA in the present identi�cation procedure, the

entries that make up the data matrix given in equation (65) are precisely the recovered system

Markov parameters Y� (� = 0; 1; 2; : : :). For further details on the algorithm, the readers are

referred to various references in the literature, e.g., references 3 and 4.

Computation Steps

This section reviews the basic steps involved to implement the identi�cation procedure

developed in this paper. The related equations are identi�ed in each step of the process.

Step 1

Assume an order n for the system to be identi�ed. Choose an order p for the ARMA model,

and select the prescribed eigenvalues of the observer. For the eigenvalue assignment procedures,

p is normally several times larger than the assumed order of the system, n. Speci�cally, the value

of p chosen must be consistent with the prescribed eigenvalues for the observer, as described in

the following:

(a) For real eigenvalues, select n real eigenvalues �i (i = 1; 2; : : : ; n) such that �
p
i � 0.
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(b) For complex eigenvalues, the eigenvalues must appear in complex conjugate pairs,

�i = �i � j!i (i = 1; 2; : : : ; n=2) such that

2
4 �i !i

�!i �i

3
5
p

� 0

(c) For a combination of real and complex eigenvalues, the same rules apply.

(d) For deadbeat observers, however, all eigenvalues are set to be zero, and p is the same as n.

The identi�cation equations for the deadbeat case have taken this into account. Therefore,

no explicit speci�cation of the eigenvalues for this case is necessary.

Note that for asymptotic stability, all prescribed real or complex eigenvalues must have

magnitudes less than unity.

Step 2

Compute the observer parameters. The appropriate recursive equations used for each case

are outlined as follows. For observers with assigned real eigenvalues, equations (38) are used for

the SISO case, and equations (B13) are used for the MIMO case. For observers with complex

eigenvalues, the recursive equations are obtained simply by replacing b(i) by bc(i), and �(i� 1)

by �c(i � 1) in equations (38) for the SISO case, and by replacing b by bc, and �(i � 1) by

�c(i � 1) in equations (B13) for the MIMO case. For observers with mixed real and complex

eigenvalues, replace b(i) by bm(i), and �(i � 1) by �m(i � 1) in equations (38) for the SISO

case, and b(i) by bm(i), and �(i� 1) by �m(i� 1) in equations (B13) for the MIMO case. For

deadbeat observers, the appropriate recursive equations are obtained by replacing b(i) by bd(i),
and �(i� 1) by �d(i� 1) in equations (38) for the SISO case, and b(i) by bd(i), and �d(i� 1)

by �d(i� 1) in equations (B13) for the MIMO case.

Step 3

Reconstruct the observer Markov parameters from the identi�ed observer parameters. For

observers with real eigenvalues, equation (39) is used for the SISO case, and equation (B14)

is used for the MIMO case. For observers with complex eigenvalues, equation (50) and

equation (B23) are used, respectively. Similarly, for observers with both real and complex

eigenvalues, equation (A11) and equation (B31) are used. For deadbeat observers, however, the

identi�ed parameters are precisely the observer Markov parameters, and no reconstruction of

the observer Markov parameters is needed for this case.

Step 4

Recover the system Markov parameters from the observer Markov parameters. The general

equation is given in equation (20), which is then specialized to various cases. For observers

with real eigenvalues, equation (40) is used for the SISO case, and equation (B15) is used for

the MIMO case. For observers with complex eigenvalues, equation (51) is used for the SISO
case, and equation (B24) is used for the MIMO case. For observers with both real and complex

eigenvalues, equation (A12) and equation (B32) are used, respectively. For deadbeat observers,

equation (20) directly applies.

Step 5

Realize a state space model for the identi�ed system from the recovered system Markov

parameters in step 4 above. The basic equations for ERA are summarized in equations (65)

to (68).
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Numerical Examples

The theoretical development sections discussed the use of observers and eigenvalue placement

to recover the system Markov parameters. The Markov parameters are the pulse response

samples of a linear system. The fundamental idea in the developed identi�cation procedure
is to identify parameters of an observer rather than those of the actual system. From the

observer parameters the true system parameters can be recovered. The observer eigenvalues

or poles determine the observer pulse response decay rate. Formulations where the prescribed

eigenvalues are real, complex, mix real and complex, and zero (deadbeat) have been presented.

By making the pulse response of the observer system decay su�ciently fast through the placement

of its poles, one can truncate the response after a �nite number of time steps. Because of the

di�erent eigenvalue placement procedures, this approximation will result in di�erent convergence

properties for each respective algorithm.

To study the numerical properties of the identi�cation procedure, an analytical model of a

truss structure is used. The lightly damped structure, known as the Mini-Mast (ref. 21) at

NASA Langley Research Center, is modeled by its �rst �ve modes, with frequencies of 0.80,

0.80, 4.36, 6.10, and 6.16 Hz. A more detailed description of the system under consideration is

given in appendix C. The outputs correspond to displacement sensors, and the inputs to torque

actuators. The input-output data are simulated using random inputs for 6 sec. The system is

discretized at a sampling rate of 33.3 Hz, and an input-output history of 200 points is recorded

for system identi�cation, which is performed on a Macintosh IIci computer. The analytical

model contains �ve modes, but practically only three of them are controllable and observable

from any given input-output pair.

Single-Input Single-Output Examples

First, for clarity the case of single-input single-output identi�cation is studied. Basic

characteristics of the identi�cation algorithm can be seen in the SISO case. For this purpose,

the �rst input second output pair is used for identi�cation, which results in a system with

essentially three identi�able structural modes, i.e., a sixth-order system. Results for the cases of

real, complex, and deadbeat eigenvalue assignments are presented. The case of mixed real and

complex eigenvalue assignment is omitted here since its numerical properties may be deduced

from those of real and complex eigenvalue assignments.

Consider the case of real eigenvalue assignment. The identi�cation results for this case are

reported in �gures 1(a){1(d). Figure 1(a) shows the nominal case where six observer poles are

placed at �0:2, �0:3, and �0:4. Along with the prescribed pole locations is an estimate of the

number of samples or window width p that it takes for the observer pulse response to decay to a

negligible value. In this example, the window width is selected to be 40 points wide, i.e., p = 40,

so that (�0:2)p, (�0:3)p, (�0:4)p are negligible. The identi�cation procedure starts with an

initial estimate of the system order, which for the nominal case the assumed order is six, n = 6.

Even though the model used is of 10th-order, from any input-output pair the e�ective order of

the system is only 6.

The top left plot of �gure 1(a) shows convergence histories of the observer parameter values

calculated from the recursive least-squares solution given in equations (38). The constant values

correspond to converged parameters. Since the initial parameters are assumed to be zero, to

start the algorithm, the projection matrix <(�1) is set to a large value to reect the degree

of uncertainty of the initial guess. The plot on the top right shows the square root of the

diagonal elements of the variance or projection matrix <(i) after 160 iterations of the recursive

least-squares algorithm. In cases where the exact least-squares solution is obtained and no order

over-speci�cation occurs, the variance matrix approaches zero. In general, the variance matrix

provides a measure of the freedom in the uniqueness of the identi�ed parameters. Note that when
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the identi�ed parameters are not all independent because of order over-speci�cation, the large
variance values do not imply inaccuracies in the parameter estimates. This merely means that for

the speci�ed order, the identi�ed set of observer parameters is not unique. The recursive least-

squares solution is driven by the prediction error shown in the second row of �gure 1(a). At any

time step, the prediction error is de�ned to be the di�erence between the true output value and

the predicted output value computed based on the estimated model available at that time step.

The initial prediction error is large but quickly goes to zero as the observer parameters converge

to constant values. For the case of real eigenvalue assignment, from the identi�ed observer

parameters, the observer Markov parameters are recovered by equation (39). The actual system

Markov parameters are then computed by equation (40). Using the computed pulse response,

realization of a state-space representation of the system is performed using equations (65){(68).

At this step, the initial assumption made about the system order (n = 6) is veri�ed by counting

the number of nonzero singular values. Shown in the second row of �gure 1(a) is a bar chart of

the normalized singular values which shows six nonzero singular values.

The top four plots of �gure 1(a) are indicators as to how well the parameters are identi�ed.

The bottom four plots show results comparing the identi�ed state space model and the true

system model. Included in this group are comparisons of realized and actual pulse responses;

actual displacement history used in the identi�cation, and its reconstruction using the identi�ed

model; and the frequency response functions. There are two curves in each plot; the solid curve

corresponds to actual data and the dashed curve to reconstruction. When an exact model of the

system is identi�ed, the two sets of curves overlap.

To study the e�ect of order under-speci�cation, �gure 1(b) shows the results when the

observer poles are placed on the real axis, as in �gure 1(a), but the assumed system order

is set to n = 2. This is a case where not enough freedom is allowed in the identi�cation

procedure. The parameter values, shown on the top left of �gure 1(b), do not tend to constant

values as in �gure 1(a). Although the variance is small, the prediction error shows discrepancies

between the predicted and actual outputs. Realization using the identi�ed parameters results

in a system of order two, as shown by the singular value plot. When comparing the impulse
responses, it is clear that the results are in error. So are the reconstructed displacement and

frequency response functions. In this case, the algorithm attempts to identify a sixth-order

system by a second-order model. Figure 1(c) shows the results when the assumed system order

is increased to four, n = 4. Convergence of the parameters is observed, and the corresponding

variance is small. The prediction error uctuates about zero. The realized system order is four,

as depicted in the singular value plot. Comparing the pulse responses shows very small errors.

However, the frequency response functions show that the identi�ed system (depicted by the

dashed curve) missed the mode with the smallest contribution to the system response. This is

why the reconstructed displacement, when compared with the actual displacement as shown in

the lower left plot, shows no visible di�erences. This example suggests a potential application

of the algorithm for identi�cation of reduced order models.

To examine the case of order over-speci�cation, �gure 1(d) shows the results when the observer

poles are also placed on the real axis as before, but the order of the system is over speci�ed to

be n = 10. Results are similar to those shown in �gure 1(a), with two important distinctions.

First, the parameter variances are now substantially larger than those in the previous cases; in

fact they are an order of magnitude larger than the identi�ed parameters. Second, the realized

system order is correctly identi�ed to be 6 even though the initial assumed order is 10. Large

variances are expected when the identi�ed parameters are not all linearly independent. When

order over-speci�cation occurs, there are more parameters than necessary to identify the system

exactly. It is important to observe that at the realization step, however, the system and its order

are identi�ed correctly. For the case of SISO identi�cation, if the assumed order is less than

or equal to the true order of the system, as shown in �gures 1(a){1(c), the algorithm returns
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an identi�ed model with the same order as assumed. However, if the assumed order is more
than the true order, the algorithm returns a model with the correct minimal order, as shown

in �gure 1(d). The identi�cation procedure, as mentioned earlier, places the observer poles at

prescribed locations. To verify the proper eigenvalue placement, the observer pulse responses

are used to realize the observer model, and the recovered eigenvalues are found to be identical

to the prescribed values in all cases.

The next group of �gures (�gs. 2(a){2(d)) presents results when complex poles are prescribed.
Six complex poles are placed on a circle with a radius r = 0:5 in the complex plane corresponding

to the same damping level. The window width is selected to be p = 40. The top left

plot shows the parameter convergence histories. The identi�ed parameters are now given by

equation (45) instead of equations (31). The overall performance given in terms of prediction

error, reconstructed response, pulse response, and frequency response functions is similar to that

of the real case. Results for the complex case with order under-speci�cation, n = 2, are shown

in �gure 2(b). When the assumed order is increased to four, �gure 2(c) shows that the identi�ed

solution misses the weakest mode of the system. Again, this is consistent with previous results.

In the complex case when the system order is over speci�ed, n = 10, some of the parameters

do not converge, as shown in �gure 2(d). Nevertheless, the system and its order are identi�ed

correctly. This points out that there are linearly dependent parameters that are being identi�ed.

This is also indicated by the large variances computed.

To study the e�ect of truncation error when the pulse responses have not decayed to zero

in the allowed window width, the pole radius in the complex case is increased to 0.9 while

maintaining the same window width p = 40. Results in �gure 3(a) show the parameter values

drifting, while the variance is relatively small. The correct system order is used in this example.

The prediction error is large, and the realization procedure identi�es a fourth-order system. The

identi�ed pulse response, the reconstructed output, and the frequency response functions are

signi�cantly di�erent from those of the actual system. The situation can be easily corrected by

increasing the window width to p = 80 to reduce the truncation error. This is veri�ed by the

results presented in �gure 3(b).

To eliminate the truncation error, the observer poles can all be placed at the origin. This

is known as the deadbeat case because the observer pulse responses will go to zero in exactly

a �nite number of time steps. No estimate of the window width is needed, because once an

assumption about the system order is made, the window width is automatically �xed. Results

for the deadbeat case assuming the correct order are shown in �gure 4(a). These results are

similar to the real and complex cases, although the identi�ed parameters are di�erent. In all the

cases discussed, the same input-output time histories are used for identi�cation. Figures 4(b)

and 4(c) show the deadbeat case when the assumed order is two and four, respectively.

Figure 4(d) depicts results for order over-speci�cation.

As with any numerical method, proper conditioning of the data is important. When

identifying systems where the magnitudes of the input and output values are orders of magnitude

apart, because of the use of di�erent units for example, proper scaling of the numerical values

is critical. This is true even for simple systems. The results shown here are scaled such that the

input and output values have comparable magnitudes prior to application of the algorithm.

Multiple-Input Multiple-Output Examples

Identi�cation of MIMO systems proceeds similarly to the SISO case. The model is the same,

but now two inputs and two outputs are used for identi�cation. The system is now of order 10.

As in the SISO case, 200 data points are used in the identi�cation algorithm.

First, consider the case where all prescribed observer poles are real. Initially the assumed

order is set to n = 4 with corresponding pole locations at �0:2 and �0:3, and the window
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width p is set to 40. The top row of �gure 5(a) shows the parameter convergence histories and
the variance distribution for the least-squares solution. The parameters seem to have reached

constant values, but some variations are still observed. Since the true order is 10, this is a

case where the assumed order is less than the true order. This lack of freedom in the identi�ed

parameters prevents the prediction error from converging to zero, as shown in the second row of

�gure 5(a). Counting the number of nonzero singular values, the identi�ed system order is found

to be eight. The system pulse response, the reconstructed output, and the frequency response

functions are in error. Figure 5(b) shows the results when the assumed order is increased to

six. The parameters converge to constant values but the variances are large. Large variances

indicate that some redundancy in the identi�ed parameters has occurred. However, this does not

a�ect the �nal answers. The prediction error converges to zero, and the system order is correctly

identi�ed to be 10. This is in contrast with the SISO case, where the identi�ed system order does

not exceed the assumed system order. It is important to note that for a given set of poles, the

pole placement problem generally contains an in�nite number of solutions for a multiple-output

system. This results in additional freedom in the algorithm that is not present in the SISO case.

It is this freedom that allows the identi�cation of a system with a higher dimension than initially

sought. One interesting aspect of the MIMO case is that when the observer pulse responses are

realized to verify the prescribed pole locations, the apparent observer order is equal to the

assumed order times the number of outputs. The resulting observer poles are those prescribed

initially, but they are repeated as many times as the number of system outputs. A comparison

of the pulse response, the reconstructed response, and the frequency response functions for the

second output shows excellent agreement. Results for the �rst output are similar and not shown

here.

Figure 6(a) shows results when the prescribed observer poles are complex. The poles are

distributed evenly in the complex plane on a circle with radius r = 0:5. The assumed order

is four. As in the real case, the window width p is set to 40. Results are similar to those of

the real case in �gure 5(a). Figure 6(b) shows the complex case when the assumed order is set

to six. For the deadbeat algorithm, �gures 7(a) and 7(b) show the identi�cation results with

assumed orders of four and six, respectively, when all prescribed poles are placed at the origin.

Performance of the identi�cation algorithm is similar to the previously discussed examples. As

in the SISO case, if the assumed order is higher than the true order, the system can still be

correctly identi�ed, and the algorithm returns an identi�ed model of minimal order.

Concluding Remarks

This paper formulates an algorithm for identi�cation of linear multivariable systems from

general input-output data. Data from either single or multiple sets of experiments can be used

to identify or update the system model. For each data set, the initial condition may be arbitrary

and need not be known. The procedure identi�es the Markov parameters of an observer system

instead of those of the actual system. The actual system Markov parameters are recovered from

the observer Markov parameters and then used to realize a minimal state space model of the

system. The embedded eigenvalue assignment procedure is used to specify the observer with

asymptotically stable poles. The prescribed poles may be real, complex, or mixed real and

complex. When all the prescribed poles are placed at the origin, this results in an identi�cation

algorithm with a deadbeat observer. Expressed in linear form, the observer Markov parameters

can be solved for in one step for o�-line computation, or recursively for on-line computation.

The standard least-squares algorithm, which is used in one step of this identi�cation procedure,

may be replaced by other recursive parameter estimation algorithms. Identi�cation procedures

for both single-input single-output and multiple-input multiple-output systems are formulated,

and numerical examples using noise-free simulated data are presented to illustrate the basic

characteristics of the developed method.
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Appendix A

SISO Mixed Real and Complex Eigenvalue Assignment

The identi�cation procedure with mixed real and complex eigenvalue assignment can be

derived in the same way as the case with real or complex eigenvalues. Among n prescribed

eigenvalues, let nr denote the number of prescribed real eigenvalues �i (i = 1; 2; : : : ; nr) and

nc the number of prescribed complex eigenvalues, �i = �i � j!i (i = 1; 2; : : : ; nc=2). Then
write A = T�1�mT , and

�m =

2
66666666666666666666664
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The product (cA � b0) in equation (24) becomes
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The elements c�i , b
�
i , and m�

i (i = 1; 2; : : : ; n) are de�ned exactly the same way as in

equations (28). Equation (24) now becomes
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which is again in linear form with
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The matrix =m is a Vandermonde-like matrix of n prescribed real and complex eigenvalues of

magnitudes less than unity:

=m =

2
4 =
=c

3
5 (A9)
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2 � � � � � � �2 1

!
(p�1)
2 !

(p�2)
2 � � � � � � !2 0

...
... � � � � � �

...
...

�
(p�1)
nc=2

�
(p�2)
nc=2

� � � � � � �nc=2 1

!
(p�1)
nc=2

!
(p�2)
nc=2

� � � � � � !nc=2 0

3
777777777777777777775

(A10)

and the p�1 input and output history vectors u(i�p) and y(i�p) are de�ned in equations (38).
The standard recursive least-squares solution for the mixed real and complex eigenvalue case

is obtained by simply replacing the estimated parameter vector b(i) by bm(i), and �(i� 1) by

�m(i � 1) in equations (38). The observer Markov parameters Y � (� = 0; 1; 2; � � �) can be

reconstructed according to

Y � =

�
�Tm�

(�)
m �Tm�

(�)
m

�
�

�
Y
(1)
� Y

(2)
�

�
(A11)

Finally, the actual system Markov parameters can then be recovered as

Y� = �Tm�
(�) + �Tm

 
��1X
i=0

�
(�)
m Y��i�1 + �

(�)
m d

!
(A12)
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Appendix B

Generalization to Multiple-Input Multiple-Output Systems

The developed identi�cation theory for single-input single-output systems can be extended

to the multivariable case. Consider the multivariable system in equations (1). The input-output

relation in terms of the Markov parameters of an observer system is given in equation (9), which

can be rewritten in ARMA model form as

y(i) =

p�1X
�=0

�
CA �B0

�
u(i� � � 1)�

p�1X
�=0

�
CA �M

�
y(i� � � 1) +Du(i) (B1)

where

Y � = CA � B =

�
CA �B0 �CA �M

�
B0 = B +MD

A recursive algorithm that computes the matrix coe�cients of the ARMA model, and at the

same time places the eigenvalues of A at prescribed locations, is derived in the following sections.

These eigenvalues again may be real, complex, a combination of both, or zero (deadbeat).

MIMO Real Eigenvalue Assignment

Let the prescribed eigenvalues of A = T�1�T be denoted by �i (i = 1; 2; � � � ; n). Then the

products CA �B0 and CA �M become

CA �B0 = CT�1��TB0 CA �M = CT�1��TM (B2)

If the elements of C� � CT�1, B� � TB0, and M� � TM are written explicitly as

C� =

�
c�
(1)

c�
(2)

� � � c�
(n)

�
B� =

2
6666666664

b�T
(1)

b�T
(2)

...

b�T
(n)

3
7777777775

M� =

2
6666666664

m�T
(1)

m�T
(2)

...

m�T
(n)

3
7777777775

(B3)

where c�(i) denotes the ith column vector of the matrix C�, and b�T(i) and m�T
(i) (i = 1; 2; � � � ; n)

denote the ith row vectors of the matrices B� and M�, respectively, then the products in

equation (B1) may be expressed as

CA �B0 = C���B� =

�
c�
(1)
b�T
(1)

c�
(2)
b�T
(2)

� � � c�
(n)

b�T
(n)

�
2
6666666664

�
(�)
1;m

�
(�)
2;m

...

�
(�)
n;m

3
7777777775

(B4)
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CA �M = C���M� =

�
�c�

(1)
m�T
(1)

�c�
(2)
m�T
(2)

� � � �c�
(n)

m�T
(n)

�
2
6666666664

�
(�)
1;q

�
(�)
2;q

...

�
(�)
n;q

3
7777777775

(B5)

where �
(�)
i;m and �

(�)
i;q are m�m and q� q diagonal matrices of the eigenvalue �i repeated m and

q times, respectively, i.e.,

�
(�)
i;m =

2
66664
��i

. . .

��i

3
77775
m�m

�
(�)
i;q =

2
66664
��i

. . .

��i

3
77775
q�q

(B6)

With the following simplifying de�nitions as in equations (31)

� =

�
c�
(1)
b�T
(1)

c�
(2)
b�T
(2)

� � � c�
(n)

b�T
(n)

�

� =

�
�c�

(1)
m�T
(1)

�c�
(2)
m�T
(2)

� � � �c�
(n)

m�T
(n)

�

�
(�)
m =

�
�
(�)
1;m �

(�)
2;m � � � �

(�)
n;m

�T

�
(�)
q =

�
�
(�)
1;q �

(�)
2;q � � � �

(�)
n;q

�T

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(B7)

equation (B1) becomes

y(i) = �

p�1X
�=0

�
(�)
m u(i� � � 1) + �

p�1X
�=0

�
(�)
q y(i� � � 1) +Du(i)

= �(i� 1) (B8)

where u(i) and y(i) are m � 1 and q � 1 input and output vectors, respectively. The above

equation is in a linear form with the unknown parameters in the matrices �, �, and D with

 =

�
� � D

�
�(i� 1) =

2
6664
�(i� 1)

'(i� 1)

u(i)

3
7775 (B9)
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where

�(i� 1) =

p�1X
�=0

�
(�)
m u(i� � � 1) = =mu(i� p)

'(i� 1) =

p�1X
�=0

�
(�)
q y(i� � � 1) = =qy(i� p)

9>>>>>>>>=
>>>>>>>>;

(B10)

and

=m =

�
�
(p�1)
m �

(p�2)
m � � � �

(1)
m �

(0)
m

�

=

2
6666666664

�
(p�1)
1;m �

(p�2)
1;m � � � �

(1)
1;m Im�m

�
(p�1)
2;m �

(p�2)
2;m � � � �

(1)
2;m Im�m

...
... � � �

...
...

�
(p�1)
n;m �

(p�2)
n;m � � � �

(1)
n;m Im�m

3
7777777775

(B11)

In terms of the prescribed eigenvalues, =m has the following structure:

=m =

2
6666666666666666666666666666666664

2
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�
p�1
1

. . .

�
p�1
1

3
77775

2
66664
�
p�2
1

. . .

�
p�2
1

3
77775 � � �

2
66664
�1

. . .

�1

3
77775

2
66664
1

. . .

1

3
77775
m�m2

66664
�
p�1
2

. . .

�
p�1
2

3
77775

2
66664
�
p�2
2

. . .

�
p�2
2

3
77775 � � �

2
66664
�2

. . .

�2

3
77775

2
66664
1

. . .

1

3
77775
m�m

...
...

...
...

...2
66664
�
p�1
n

. . .

�
p�1
n

3
77775

2
66664
�
p�2
n

. . .

�
p�2
n

3
77775 � � �

2
66664
�n

. . .

�n

3
77775

2
66664
1

. . .

1

3
77775
m�m

3
7777777777777777777777777777777775

Similarly,

=q =

�
�
(p�1)
q �

(p�2)
q � � � �

(1)
q �

(0)
q

�
(B12)

which has the same general structure as =m except the block matrices are of dimensions q � q.
The mp�1 input history vector u(i�p) and the qp�1 output history vector y(i�p) are de�ned

the same way as in equations (37) except that the input u(i) is of dimensions m � 1, and the

output y(i) is of dimensions q�1. Equation (B8) is in linear form; the parameter matrix  can be
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solved for directly from input-output data. For on-line computation, the recursive least-squares
solution to the parameter matrix  is given as

bT (i) = bT (i� 1) +
<(i� 2)�(i� 1)

1 + �(i� 1)T<(i� 2)�(i� 1)

�
y(i)� b(i� 1)�(i� 1)

�T

<(i� 1) = <(i� 2)�
<(i� 2)�(i� 1)�(i� 1)T<(i� 2)

1 + �(i� 1)T<(i� 2)�(i� 1)

9>>>>>=
>>>>>;

(B13)

The observer Markov parameters Y � (� = 0; 1; 2; � � �) can be reconstructed according to

Y � = CA � B = CA �

�
B0 �M

�

=

�
��

(�)
m ��

(�)
q

�
=

�
Y

(1)
� Y

(2)
�

�
(B14)

Finally, the actual system Markov parameters can then be recovered from the reconstructed

observer Markov parameters according to equation (20) as

Y� = Y
(1)
� +

��1X
i=0

Y
(2)
� Y��i�1 + Y

(2)
� D

= ��
(�)
m + �

 
��1X
i=0

�
(�)
q Y��i�1 + �

(�)
q D

!
(B15)

MIMO Complex Eigenvalue Assignment

The complex eigenvalue assignment for the multiple-input multiple-output case can be derived

by setting A = T�1�cT , where �c is given as in equation (41). The prescribed complex conjugate

pairs of eigenvalues are denoted �i = �i� j!i (i = 1; 2; : : : ; n=2). Using the same notation for

vectors formed by the columns and rows of C� andB�, respectively, the products in equation (B1)

may be expressed as

CA �B0 = C���
cB

�

= �
(�)

1

�
c�
(1)
b�T
(1)

+ c�
(2)
b�T
(2)

�
+ !

(�)

1

�
c�
(1)
b�T
(2)
� c�

(2)
b�T
(1)

�
+ �

(�)

2

�
c�
(3)
b�T
(3)

+ c�
(4)
b�T
(4)

�

+ !
(�)

2

�
c�
(3)
b�T
(4)
� c�

(4)
b�T
(3)

�
+ � � �+ �

(�)

n=2

�
c�
(n�1)

b�T
(n�1)

+ c�
(n)

b�T
(n)

�
+ !

(�)

n=2

�
c�
(n�1)

b�T
(n)

� c�
(n)

b�T
(n�1)

�

= �c�
(�)
c;m

CA �M = C���
cM

�

= �
(�)

1

�
c�
(1)
m�T

(1)
+ c�

(2)
m�T

(2)

�
+ !

(�)

1

�
c�
(1)
m�T

(2)
� c�

(2)
m�T

(1)

�
+ �

(�)

2

�
c�
(3)
m�T

(3)
+ c�

(4)
m�T

(4)

�

+ !
(�)

2

�
c�
(3)
m�T

(4)
� c�

(4)
m�T

(3)

�
+ � � � + �

(�)

n=2

�
c�
(n�1)

m�T

(n�1)
+ c�

(n)
m�T

(n)

�
+ !

(�)

n=2

�
c�
(n�1)

m�T

(n)
� c�

(n)
m�T

(n�1)

�

= �c�
(�)
c;q

(B16)
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where

�c =

�
c�
(1)
b�T
(1)

+ c�
(2)
b�T
(2)

c�
(1)
b�T
(2)
� c�

(2)
b�T
(1)

� � � c�
(n�1)

b�T
(n�1)

+ c�
(n)

b�T
(n)

c�
(n�1)

b�T
(n)

� c�
(n)

b�T
(n�1)

�

�c = �

�
c�
(1)
m�T

(1)
+ c�

(2)
m�T

(2)
c�
(1)
m�T

(2)
� c�

(2)
m�T

(1)
� � � c�

(n�1)
m�T

(n�1)
+ c�

(n)
m�T

(n)
c�
(n�1)

m�T

(n)
� c�

(n)
m�T

(n�1)

�

�
(�)
c;m =

�
�
(�)

1;m
!
(�)

1;m
�
(�)

2;m
!
(�)

2;m
� � � �

(�)

n=2;m
!
(�)

n=2;m

�T �
�
(0)

i;m
= Im�m; !

(0)

i;m
= 0m�m

�

�
(�)
c;q =

�
�
(�)

1;q
!
(�)

1;q
�
(�)

2;q
!
(�)

2;q
� � � �

(�)

n=2;q
!
(�)

n=2;q

�T �
�
(0)

i;q
= Iq�q; !

(0)

i;q
= 0q�q

�

The matrices �
(�)
i;m and !

(�)
i;m are m�m diagonal matrices formed by �

(�)
i and !

(�)
i repeated m

times, respectively; �
(�)
i and !

(�)
i are the elements associated with the complex eigenvalue pair

�i = �i � j!i (i = 1; 2; � � � ; n=2) as de�ned in equation (42), i.e.,

�
(�)
i;m =

2
666664
�
(�)
i

. . .

�
(�)
i

3
777775
m�m

!
(�)
i;m =

2
666664
!
(�)
i

. . .

!
(�)
i

3
777775
m�m

(B17)

Similar de�nitions apply for �
(�)
i;q and !

(�)
i;q simply by replacing m by q. Equation (B1) now

becomes

y(i) = �c

p�1X
�=0

�
(�)
c;mu(i� � � 1) + �c

p�1X
�=0

�
(�)
c;q y(i� � � 1) +Du(i)

= c�c(i� 1) (B18)

where

c =

�
�c �c D

�
�c(i� 1) =

2
6664
�c(i� 1)

'c(i� 1)

u(i)

3
7775 (B19)

The vectors �c(i� 1) and 'c(i� 1) in equations (B19) are given as

�c(i� 1) =

p�1X
�=0

�
(�)
c;mu(i� � � 1) = =c;mu(i� p)

'c(i� 1) =

p�1X
�=0

�
(�)
c;q y(i� � � 1) = =c;qy(i� p)

9>>>>>>>>=
>>>>>>>>;

(B20)
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and
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(B21)

and similarly,

=c;q =
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(B22)
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In terms of the prescribed complex eigenvalues, =c;m has the following structure:
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The structure for =c;q is similar. The recursive solution to equation (B18) can be obtained by

replacing b by bc, and �(i�1) by �c(i�1) in equations (B13). The observer Markov parameters

and the actual Markov parameters can then be computed as

Y � = CA � B = CA �

�
B0 �M

�

=

�
�c�

(�)
c;m �c�

(�)
c;q

�
=

�
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� Y

(2)
�
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(B23)
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Y� = Y
(1)
� +

��1X
i=0

Y
(2)
� Y��i�1 + Y
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c;m + �c
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!
(B24)

MIMO Mixed Real and Complex Eigenvalue Assignment

Among n prescribed eigenvalues, let nr denote the number of prescribed real eigenvalues

�i (i = 1; 2; : : : ; nr) and nc the number of prescribed complex eigenvalues �i � j!i
(i = 1; 2; : : : ; nc=2). Then write A = T�1�mT , and �m as in equation (A1), and de�ne
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(B25)

where
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� � � � � � � � �

�
c�
(n�1)

b�T
(n)

� c�
(n)

b�T
(n�1)

�#

� = �

�
c�
(1)
m�T

(1)
c�
(2)
m�T

(2)
� � � c�

(nr )
m�T

(nr)

�

�c = �

��
c�
(nr+1)

m�T

(nr+1)
+ c�

(nr+2)
m�T

(nr+2)

�
� � � � � � � � �

�
c�
(n�1)

m�T

(n)
� c�

(n)
m�T

(n�1)

��

and

�
(�)
m =

�
�
(�)

1;m
�
(�)

2;m
� � � �

(�)
nr ;m

�T

�
(�)
q =

�
�
(�)

1;q �
(�)

2;q � � � �
(�)
nr ;q

�T

�
(�)
c;m =

�
�
(�)

1;m !
(�)

1;m �
(�)

2;m !
(�)

2;m � � � �
(�)

nc=2;m
!
(�)

nc=2;m

�T
; �

(0)

i;m
= Im�m; !

(0)

i;m
= 0m�m

�
(�)
c;q =

�
�
(�)

1;q
!
(�)

1;q
�
(�)

2;q
!
(�)

2;q
� � � �

(�)

nc=2;q
!
(�)

nc=2;q

�T
; �

(0)

i;q
= Iq�q ; !

(0)

i;q
= 0q�q

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(B26)

Equation (B1) may be expressed as

y(i) = �m

p�1X
�=0

�
(�)
m;mu(i� � � 1) + �m

p�1X
�=0

�
(�)
m;qy(i� � � 1) +Du(i)

= m�m(i� 1) (B27)
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where

m =

�
�m �

m
D

�
�m(i� 1) =

2
6664
�m(i� 1)

'm(i� 1)

u(i)

3
7775 (B28)

�m(i� 1) =

p�1X
�=0

�
(�)
m;mu(i� � � 1) = =m;mu(i� p)

'm(i� 1) =

p�1X
�=0

�
(�)
m;qy(i� � � 1) = =m;qy(i� p)

9>>>>>>>>=
>>>>>>>>;

(B29)

The matrix =m;m includes elements formed from both real and complex prescribed eigenvalues:

=m;m =

2
4 =m

=c;m

3
5 (B30)

where

=m =

2
666666664

�
(p�1)

1;m �
(p�2)

1;m � � � �
(1)

1;m Im�m

�
(p�1)

2;m �
(p�2)

2;m � � � �
(1)

2;m Im�m

...
... � � �

...
...

�
(p�1)
nr ;m �

(p�2)
nr ;m � � � �

(1)
nr ;m Im�m

3
777777775

=
c;m =

2
666666666666666666664

�
(p�1)

1;m �
(p�2)

1;m � � � � � � �
(1)

1;m Im�m

!
(p�1)

1;m
!
(p�2)

1;m
� � � � � � !

(1)

1;m
0m�m

�
(p�1)

2;m
�
(p�2)

2;m
� � � � � � �

(1)

2;m
Im�m

!
(p�1)

2;m
!
(p�2)

2;m
� � � � � � !

(1)

2;m
0m�m

...
... � � � � � �

...
...

�
(p�1)

nc=2;m
�
(p�2)

nc=2;m
� � � � � � �

(1)

nc=2;m
Im�m

!
(p�1)

nc=2;m
!
(p�2)

nc=2;m
� � � � � � !

(1)

nc=2;m
0m�m

3
777777777777777777775

The diagonal matrices �
(�)
i;m, �

(�)
i;m, !

(�)
i;m in =m;m are of dimensions m �m, i = 1; 2; : : : ; nr,

or nc=2, and � = 1; 2; : : : ; p � 1. Similar structures apply for =m;q, which is composed

of the matrices �
(�)
i;q , �

(�)
i;q , !

(�)
i;q of dimensions q � q instead. The recursive solution to the

parameter matrix m is obvious. The observer Markov parameters and the actual system Markov

parameters are simply

Y � =

�
�m�

(�)
m;m �m�

(�)
m;q

�
=

�
Y

(1)
� Y

(2)
�

�
(B31)

Y� = �m�
(�)
m;m + �m

 
��1X
i=0

�
(�)
m;qY��i�1 + �

(�)
m;qD

!
(B32)

MIMO Deadbeat Eigenvalue Assignment

In the deadbeat case, all eigenvalues of the observer are placed at the origin. The

corresponding Markov parameters will vanish identically after n time steps. In other words,
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Y � � 0 for � = n, n+1, n+ 2; : : : : Let Md denote the deadbeat observer gain for the multiple-
input multiple-output case. The input-output description is given in terms of the observer

Markov parameters as

y(i) =

n�1X
�=0

�
CA �B0d

�
u(i� � � 1)�

n�1X
�=0

�
CA �Md

�
y(i� � � 1) +Du(i)

=

n�1X
�=0

Y
(1)
� u(i� � � 1)�

n�1X
�=0

Y
(2)
� y(i� � � 1) +Du(i)

= �du(i� n) + �dy(i� n) +Du(i)

= d�d(i� 1) (B33)

where in the above equation B0 = B +MdD; A = A+MdC, and

d =

�
�d �d D

�
�d(i� 1) =

2
6664
u(i� n)

y(i� n)

u(i)

3
7775 (B34)

�d =

�
Y

(1)
0 Y

(1)
1 � � � Y

(1)
n�1

�

�d =

�
Y

(2)
0 Y

(2)
1 � � � Y

(2)
n�1

�

9>>>>>=
>>>>>;

(B35)

The nm � 1 input history vector u(i � n) and the nq � 1 output history vector y(i � n) are

de�ned as in equations (63), except u(i) and y(i) are now m� 1 and q� 1 vectors, respectively.

Note that in the deadbeat scheme, the observer Markov parameters are solved directly from

input-output data, and the actual system Markov parameters are then recovered simply as in

equation (20).
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Appendix C

The Mini-Mast Truss Structure

A model obtained by �nite element analysis of the Mini-Mast truss structure (ref. 21) is

used as an example to illustrate the identi�cation algorithms developed in this paper. The

mathematical model has the �rst two bending modes, with practically the same frequencies

(0.8 Hz); the �rst torsional mode (4.3 Hz); and the second two bending modes (6.1 Hz), again

with practically the same frequencies. The model considers two inputs and two outputs. The

inputs are two torque wheels for the x and y axes, and the outputs are two displacement sensors

mounted at the top of the structure as shown in �gure C1. The system frequencies and the

associated damping factors expressed as the real parts of the eigenvalues are listed in table C1.

Table C1. Damping and Frequencies of

Truss Structure

Mode Damping factor Frequency, Hz

1 0.09 0.80
2 .09 .80
3 .33 4.36
4 .38 6.10
5 .39 6.16

The continuous-time system matrices are listed here. For ease of presentation, the matrices are

subdivided and given below:

A =

�
A1 A2

�

where

A1 =

2
666666666666666666666664

�8:918� 10�2 �1:330� 10�4 �5:035 4:756� 10�5 9:106� 10�4

1:303� 10�4 �8:912� 10�2 �1:474� 10�4 5:032 1:309� 10�2

5:035 1:540� 10�4 �9:212� 10�2 �1:293� 10�4 �1:403� 10�3

�4:100� 10�5 �5:032 1:335� 10�4 �9:205� 10�2 �1:540� 10�2

�3:238� 10�3 �2:093� 10�3 3:540� 10�3 7:388� 10�3 �3:251� 10�1

4:008� 10�3 �7:596� 10�3 �4:048� 10�3 2:748� 10�3 27:420

2:468� 10�2 �9:535� 10�2 �2:691� 10�2 �1:040� 10�1 1:546� 10�3

�9:585� 10�2 �2:514� 10�2 1:043� 10�1 �2:748� 10�2 3:791� 10�3

2:660� 10�2 �1:015� 10�1 �2:617� 10�2 �9:974� 10�2 �3:283� 10�3

�1:020� 10�1 �2:627� 10�2 1:005� 10�1 �2:567� 10�2 1:491� 10�2

3
777777777777777777777775
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A2 =

2
666666666666666666666664

�1:549� 10�3 5:498� 10�3 �1:999� 10�2 �9:892� 10�3 3:740� 10�2

1:527� 10�2 �2:110� 10�2 �6:062� 10�3 3:859� 10�2 1:079� 10�2

1:214� 10�3 1:010� 10�2 �3:766� 10�2 �5:495� 10�3 2:055� 10�2

�1:412� 10�2 3:884� 10�2 1:075� 10�2 �2:179� 10�2 �6:517� 10�3

�27:420 �9:447� 10�3 1:774� 10�2 1:114� 10�2 �2:519� 10�2

�3:330� 10�1 �9:884� 10�3 2:238� 10�2 1:117� 10�2 �2:125� 10�2

2:839� 10�3 �3:763� 10�1 5:972� 10�1 38:364 �1:010� 10�1

�1:320� 10�2 �5:956� 10�1 �3:790� 10�1 �4:656� 10�2 38:660

�2:834� 10�3 �38:364 4:638� 10�2 �3:912� 10�1 �5:969� 10�1

�2:657� 10�3 1:011� 10�1 �38:660 5:986� 10�1 3:943� 10�1

3
777777777777777777777775

B =

2
666666666666666666666664

2:345� 10�3 �1:996� 10�3

�2:101� 10�3 �2:360� 10�3

�2:349� 10�3 1:999� 10�3

�2:015� 10�3 �2:364� 10�3

�1:052� 10�4 �2:488� 10�4

1:107� 10�4 2:455� 10�4

1:667� 10�3 9:519� 10�4

�9:095� 10�4 1:554� 10�3

1:630� 10�3 9:180� 10�4

�8:917� 10�4 1:509� 10�3

3
777777777777777777777775

C =

�
C1 C2

�

and

D =

2
4 0:000 0:000

0:000 0:000

3
5

where

C1 =

2
4 1:119� 10�2 4:016� 10�3 1:122� 10�2 �4:025� 10�3 �9:167� 10�3

�9:114� 10�3 7:620� 10�3 �9:136� 10�3 �7:639� 10�3 �9:311� 10�3

3
5

C2 =

2
4�9:177� 10�3 �4:321� 10�4 �2:448� 10�3 4:669� 10�4 2:393� 10�3

�9:326� 10�3 �2:427� 10�3 1:965� 10�3 2:423� 10�3 �1:990� 10�3

3
5

In the numerical examples, the system model is discretized at a sampling frequency of 33.3 Hz.
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Figure C1. Mini-Mast structure showing the x and y torque wheel inputs TWAx, TWAy , and the displacement
outputs D18A, D18B on bay 18 tip plane.
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